Category Archives: Rational Drug Design

A newly discovered means for controlling viral infection

This image shows a 0.1 x 0.03 inch (2.5 x 0.8 ...
A  small Drosophila melanogaster fly. (Photo credit: Wikipedia)

The first moment a virus infects a cell it has to deal with multiple cellular defenses. From surviving highly acidic conditions in endosomes  to evading the host enzymes that can digest its very genetic code, an invading virus must navigate and eventually subvert the functions of a host cell. This intricate molecular dance has played out time and again for millions of years and modern science is just beginning to understand and appreciate the intricacy of these steps.

A recent paper published in Nature Immunology suggests that there may be even more steps in the virus-host dance than we had imagined. Outside of science fiction, I would have dismissed this mechanism until I read the paper  “RNA-mediated interference and reverst transcription control the persistence of RNA viruses in the insect model Drosophila” by Goic and others (1).

Keep reading to find out more about this new exciting mechanism of viral defense. Continue reading

Designer immunity, vectored immunoprophylaxis and the future of medicine

Antibody Molecule
Antibody Molecule (Photo credit: sc63)


One of my very favorite aspects of being a scientist is being right on the cutting edge of modern research. I have the pleasure of working in an environment where new discoveries are made daily that span from the mundane to the revelatory. Today I want to take the time to write about a recent paper that for me came to my attention that falls solidly in the revelatory category.



This 2012 Nature paper by Balazs et al is a great example of modern virology in combination with immunology is being used in novel ways to combat different health issues. Read on to see how this group used a viral vector to give mice protective immunity against HIV infection. Continue reading

Triumphs in rational drug design: Hepatitis C

English: The genome organisation of Hepatitis ...
The genome organisation of Hepatitis c virus. One open reading frame encodes a polyprotein of 3010 amino acids. This protein is cut by viral and cell enzymes to active proteins. (Photo credit: Wikipedia)


Despite our ever-dwindling supply of effective antibiotics, there have been a growing number of drugs that are effective against viral diseases. Many of these new drugs are not the result of happy chance or serendipity, as was penicillin, but rather the result of a process known as rational drug design. Continue reading

Mining host functions in search of novel treatments: APOBEC3G and retroviruses

English: Diagram of the HIV virus.
Diagram of  HIV virus. (Photo credit: Wikipedia)

Hello Readers! My apologies for the unexpected hiatus as preliminary exams and the end of the semester have occupied the bulk of my time recently. I thought I would make the most of the situation and post the written portion that I’ve recently completed as it is an interesting subject I was unaware of until recently. Studies in this area may lead to future treatments for retroviral infections such as human immunodeficiency virus 1 (HIV-1), the infectious agent responsible for acquired immune deficiency syndrome (AIDS) by showing exactly how the host protein APOBEC3G exerts an antiviral effect against this virus in the cell. Continue reading