Category Archives: Viral Disease

Mers-CoV Particles

The decade of the Coronavirus: What SARS and MERS have taught us about containing potential pandemics

Colorized transmission electron micrograph of the Middle East respiratory syndrome coronavirus (Credit: NIAID via Flickr used under CC license)

In 2002 the first cases of a strange new flu-like illness began appearing in southern China.  As case numbers mounted well into 2003, it became clear that this was not the flu. Patients began dying as their lungs filled with fluid and stopped functioning. Researchers rushed to determine what kind of virus was causing this disease before it could spread past hope of containment.

After the hard work of many dedicated individuals, it was determined that this new lethal virus was in fact a coronavirus (later named Sever Acute Respratory Syndrom virus, or SARS-CoV). This was odd, as this kind of virus was not known to cause serious disease in humans before this point. By comparing this new virus to older samples, it was determined that this virus was originally living in bats before jumping to civets, and then finally humans. Thankfully, due to this varied zoonotic background (which means to come from animals), SARS did not have the best person-to-person transmissibility during the early parts of the outbreak and was eventually contained once health care officials new what to look for and quarantine. Once the numbers were tallied it was determined that SARS infected over 8000 people, killing over 700 of the most unfortunate individuals. This would not be the last time a coronaviruses would make a dramatic jump into human hosts. In 2012 we were tested on what we learned during the first SARS outbreak in 2002. Continue reading

Using viruses to fight cancer

RM T2 Glioma difuso de la vía visual que se ex...
A glioma, or brain tumor (Photo credit: aktyuvinsk34)

While I’ve written in the past about viruses that can cause cancer, today I want to introduce the concept of using viruses to selectively kill cancer cells. These types of viruses are called oncolytic viruses, meaning that they kill (-lytic) cancer cells (onco-) but not normal healthy cells.

This makes them potentially very powerful tools in treating cancers that don’t respond well to established approaches of chemotherapy, radiation, or surgery. This approach is still in its infancy, but the potential of viral oncology remains promising.

Keep reading to find out more about how scientists are learning to use these viruses to treat certain kinds of cancers. Continue reading

Tiny particles with big consequences: The number of viruses it takes to start an infection


Hepatitis virions, of an unknown strain of the...
Hepatitis virions (Photo credit: Microbe World)

My last post was written to introduce the concept of quasispecies in an RNA virus population.

This article will further expand on the topic and show how the quasispecies concept was used with powerful genetic sequencing technology to figure out a specific question: How many hepatitis C virus particles does it take to start an infection in humans? Continue reading

Going against the herd: The importance of mass immunity in society

Poster from before the 1979 eradication of sma...
Poster from before the 1979 eradication of smallpox, promoting vaccination. (Photo credit: Wikipedia)

Why is it that members of the public health community are worried about falling vaccination rates in the US when getting vaccinated is treated as a largely personal choice? Do our personal health decisions for ourselves and our children have an impact on the health of society as a whole?

The answer to this is that yes, our individual decisions do matter to society when it comes to combating the spread of contagious disease.

A large part of this is herd or community immunity; the way in which mass immunity in a population can control the spread of disease among individuals. Herd immunity is a major reason behind why so many deadly diseases have all but disappeared from American society; our vaccination rates protect many of those who are unvaccinated from contagious diseases. However, this is beginning to change in the US and we are beginning to see outbreaks of diseases that have not been of major clinical concern for decades.

Read on to find out more on how herd immunity and how it protects vulnerable members of society. Continue reading

Designer immunity, vectored immunoprophylaxis and the future of medicine

Antibody Molecule
Antibody Molecule (Photo credit: sc63)


One of my very favorite aspects of being a scientist is being right on the cutting edge of modern research. I have the pleasure of working in an environment where new discoveries are made daily that span from the mundane to the revelatory. Today I want to take the time to write about a recent paper that for me came to my attention that falls solidly in the revelatory category.



This 2012 Nature paper by Balazs et al is a great example of modern virology in combination with immunology is being used in novel ways to combat different health issues. Read on to see how this group used a viral vector to give mice protective immunity against HIV infection. Continue reading

Why swine and avian flu matters for people

An iteroparous organism is one that can underg...
 I might have the flu!(Photo credit: Wikipedia)

As we enter another autumn season the memories of summer begin to fade and our minds turn towards the impending winter as the leaves begin to crisp and fall. This time of year also marks the appearance of flu-shots and news stories about the newest and scariest strains of influenza virus. Recently,  there have been multiple reports in the US  about a new form of swine flu that has been circulating at county fairs as people and pigs enter close proximity (see Related Articles after the jump).

Why is a strain of flu that infects pigs or dangerous or even relevant for people? As it turns out, from the point of view of the influenza virus a pig, bird, or human are not terribly different. Furthermore, pigs are also susceptible to certain strains of bird flu just like humans and can be multiply infected with different strains that could be human, avian, or porcine in origin. What this means is that pigs are an ideal breeding ground for reassortant  viruses and their subsequent antigenic shift, and this is where things get dangerous.

Click through to find out more about these potentially dangerous reassortant flu viruses… Continue reading